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a b s t r a c t

Among the numerous small molecules in the body, the very few aromatic ones include the estrogens
and dopamine. In relation to cancer initiation, the estrogens should be considered as chemicals, not
as hormones. Metabolism of estrogens is characterized by two major pathways. One is hydroxylation
to form the 2- and 4-catechol estrogens, and the second is hydroxylation at the 16� position. In the
catechol pathway, the metabolism involves further oxidation to semiquinones and quinones, including
formation of the catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. These
electrophilic compounds react with DNA to form the depurinating adducts 4-OHE1(E2)-1-N3Ade and 4-
OHE1(E2)-1-N7Gua. The apurinic sites obtained by this reaction generate the mutations that may lead
to the initiation of cancer. Oxidation of catechol estrogens to their quinones is normally in homeosta-
sis, which minimizes formation of the quinones and their reaction with DNA. When the homeostasis
is disrupted, excessive amounts of catechol estrogen quinones are formed and the resulting increase in

depurinating DNA adducts can lead to initiation of cancer. Substantial evidence demonstrates the muta-
genicity of the estrogen metabolites and their ability to induce transformation of mouse and human
breast epithelial cells, and tumors in laboratory animals. Furthermore, women at high risk for breast
cancer or diagnosed with the disease, men with prostate cancer, and men with non-Hodgkin lymphoma
all have relatively high levels of estrogen–DNA adducts, compared to matched control subjects. Specific

antioxidants, such as N-acetylcysteine and resveratrol, can block the oxidation of catechol estrogens to
their quinones and their reaction with DNA. As a result, the initiation of cancer can be prevented.

© 2011 Elsevier Ltd. All rights reserved.
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. Introduction

Aliphatic and heteroaromatic molecules are widely repre-
ented in the human body, whereas aromatic molecules are rarely
resent. Organic chemistry is divided into three major classes
f compounds: aliphatic, aromatic and heteroaromatic. Aromatic
hemistry is the chemistry of benzene and polycyclic aromatic
ydrocarbons. Heteroaromatic chemicals contain in their aromatic
ings one or more heteroatoms, such as nitrogen. The few aromatic
iomolecules have only one benzene ring, and include the estrogen
ormones and the neurotransmitter dopamine.

Conversion of testosterone to estradiol (E2) and androstene-
ione to estrone (E1) constitutes the biosynthesis of estrogens,
atalyzed by the enzyme aromatase, cytochrome P450 (CYP)19
Fig. 1A). Dopamine is biosynthesized by hydroxylation of the
mino acid l-tyrosine to l-Dopa, catalyzed by tyrosine hydroxy-
ase, and subsequent decarboxylation to dopamine, catalyzed by
-Dopa decarboxylase (Fig. 1B).

The parent compound of aromatic chemistry is benzene, and it
as found to induce leukemia a long time ago. The recognition that

enzene is a human leukemogen required evaluation of large popu-
ations exposed to the chemical [1]. These data were obtained from
talian and Turkish workers in the shoemaking and printing indus-
ries, who had high incidences of acute myeloid leukemia [2]. More
ecently, the induction of non-Hodgkin lymphoma by benzene has
een demonstrated [3,4]. Many polycyclic aromatic hydrocarbons
PAH) are carcinogenic, with potencies ranging from weak to very
trong [5].

Metabolic activation of benzene and PAH to ultimate carcino-
enic forms follows the principles of chemical carcinogenesis
ioneered by James and Elizabeth Miller in the early 1960s [6,7],

.e., most chemical carcinogens (95%) are metabolically activated
o electrophilic species that bind covalently to nucleophilic sites in
NA, forming predominantly DNA adducts of Ade and Gua. The
ther 5% are carcinogens that directly react with DNA without
etabolic activation.
Most of the adducts of PAH are the depurinating adducts, which

etach from DNA, leaving behind apurinic sites [8,9]. The apurinic
ites can be erroneously repaired to give rise to mutations [10] that
an initiate the cancer process. The sites of the depurinating adducts
orrelate with the sites of mutations in the Harvey (H)-ras oncogene
10]. The stable adducts, which remain in DNA unless removed by
epair, are formed to a much smaller extent.

PAH have two major mechanisms of metabolic activation to
orm ultimate carcinogens: one is formation of radical cations, and
he other is formation of bay-region diol-epoxides [8,9]. A third

echanism of metabolic activation, which produces extremely
eak ultimate carcinogens, generally involves compounds contain-

ng one or two benzene rings. In these compounds, activation occurs
hrough formation of electrophilic catechol quinones, which react
ith DNA by Michael addition to form adducts. This mechanism of

ctivation occurs with benzene [11,12], naphthalene [13,14], E1(E2)
15–17], diethylstilbestrol (DES) [18], hexestrol [19], and dopamine
11,12] (Fig. 2). In this mechanism, the benzene ring is enzymati-
ally oxidized to form a phenol. A second hydroxylation leads to
ormation of a catechol, followed by a third oxidation to form the
ltimate carcinogenic metabolite, an ortho-quinone (Fig. 2). The
lectrophilic ortho-quinone reacts with the purine bases of DNA
o form N3Ade and N7Gua adducts (Fig. 2).

. Genotoxicity of estrogens
Exposure to estrogens has been epidemiologically associ-
ted with increased risk of breast cancer, and evidence of a
ose–response relationship has been found [20,21]. Induction of
rostate adenocarcinomas in 100% of Noble rats implanted with E2
istry & Molecular Biology 125 (2011) 169–180

plus testosterone, vs. 40% of rats treated only with testosterone, led
to the hypothesis that E2 initiates and testosterone promotes the
development of prostate tumors [22].

In relation to cancer initiation, estrogens should be consid-
ered as other chemicals, namely, their physico-chemical and
biochemical properties lead them to follow the principles of chem-
ical carcinogenesis elucidated by the Millers [6,7], rather than
considering them as hormones. Substantial evidence supports a
genotoxicity paradigm for the initiation of cancer by endogenous
estrogens. Specific oxidative metabolites of estrogens can react
with DNA and generate the critical mutations that lead to the
initiation of cancer (Fig. 3) [16,17,23–29]. Two major pathways
of metabolism of estrogens are the formation of catechol estro-
gens, 2-hydroxy(OH)E1(E2) and 4-OHE1(E2), and the formation of
16�-OHE1(E2) [30]. If the catechol estrogens are not conjugated,
they can lead through oxidation to semiquinones and quinones
(Q, Figs. 3 and 4). Both the E1(E2)-2,3-Q and E1(E2)-3,4-Q react
with DNA to form DNA adducts, but the 3,4-Q are more reactive
with various nucleophilic groups of DNA than the 2,3-Q (Fig. 4)
[16,17,23,26]. Depurination of the 4-OHE1(E2)-1-N3Ade and 4-
OHE1(E2)-1-N7Gua adducts generates apurinic sites in the DNA.
Error-prone repair of these apurinic sites may lead to specific muta-
tions [27–29] that can initiate breast, prostate and other types of
human cancer (Fig. 3) [31].

Carcinogenicity testing of the endogenous estrogens E1 and
E2 and their catechols demonstrated that they induce cancer
in hormone dependent and independent organs [32–36]. This
paradigm suggests that specific critical mutations generate abnor-
mal cell proliferation leading to cancer, rather than estrogen
receptor-mediated cell proliferation giving rise to random cellular
mutations. The specificity of these critical mutations arises from
the intercalated complex between estrogens and DNA before con-
version to a covalent bond between them, as demonstrated with
DES [18].

3. Metabolism of estrogens

Metabolism of estrogens is characterized by a balanced home-
ostatic set of activating and deactivating pathways (Fig. 5).
Aromatization of androstenedione and testosterone, catalyzed by
aromatase (CYP19), yields E1 and E2, respectively. Excess estro-
gen is stored as E1-sulfate. E1 and E2 are interconverted by
17�-hydroxysteroid dehydrogenase, and they are metabolized by
hydroxylation at the 2- or 4-position to form 2-OHE1(E2) or 4-
OHE1(E2). CYP1A1 preferentially hydroxylates E1 and E2 at the
2-position, whereas CYP1B1 almost exclusively catalyzes the for-
mation of 4-OHE1(E2) [37–39]. The most common pathway of
conjugation of catechol estrogens in extrahepatic tissues is O-
methylation, catalyzed by catechol-O-methyltransferase (COMT)
[40]. If the activity of COMT is low, competitive oxidation of the
catechol estrogens to E1(E2)-2,3-Q and E1(E2)-3,4-Q by CYP or per-
oxidases can increase (Fig. 5).

Oxidation of semiquinones to quinones can also be medi-
ated by molecular oxygen. Reduction of estrogen quinones to
semiquinones, catalyzed by CYP reductase, completes the redox
cycle (Fig. 5). In this process, the molecular oxygen is reduced
to superoxide anion radical, which is converted to H2O2, yielding
hydroxyl radicals in the presence of Fe++. The hydroxyl radicals first
generate lipid hydroperoxides, which can act as unregulated cofac-
tors of CYP, leading to an abnormal increase in the oxidation of

the catechol estrogens to their quinones. Thus, redox cycling can
be a major contributor to the formation of E1(E2)-Q, which are the
ultimate carcinogenic metabolites of estrogens.

The 4-OHE1(E2) have greater carcinogenic potency than the 2-
OHE1(E2) [33–35], an effect that cannot be attributed to formation
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f hydroxyl radicals from redox cycling, because the 2-OHE1(E2)
nd 4-OHE1(E2) have the same redox potential [41,42]. Thus, the
reater carcinogenic potency of 4-OHE1(E2) must be related to the
uch higher levels of depurinating DNA adducts formed by the

,4-Q, compared to the 2,3-Q (Fig. 4) [23]. This is due to different
echanisms of adduction. The 3,4-Q react via a proton-assisted 1,4-
ichael addition [43], whereas the 2,3-Q rearrange to para-quinone
ethides, which react via a 1,6-Michael addition [44].

. Imbalances in estrogen metabolism

The above paradigm of cancer initiation by estrogens hinges on
isruption of homeostatic balance between activating and deacti-
ating pathways of estrogen metabolism (Fig. 5). This homeostasis
inimizes formation and reaction of the carcinogenic catechol

strogen quinones with DNA [45,46]. One factor that can help main-
ain estrogen homeostasis is the feedback inhibition exerted by

ethoxy estrogens on the expression of CYP1A1 and CYP1B1 [47],
hich helps regulate the levels of catechol estrogens.

A variety of endogenous and exogenous factors can disrupt
strogen homeostasis. These include diet, environment, lifestyle,
ging and genetic factors. The first critical factor is elevation of
strogen levels by excessive synthesis of estrogens due to over-
xpression of CYP19 (aromatase) [48–50] and/or the presence of
nregulated sulfatase that converts excess stored E1-sulfate to E1
51,52]. Breast tissue can synthesize E2 in situ, suggesting that much

ore E2 is present in target tissues than would be predicted from
lasma concentrations [48]. In fact, the E2 levels in breast tissue of
ostmenopausal women are similar to the levels in premenopausal
omen, although the plasma levels in postmenopausal women are

0–100 times lower [52,53].
A second critical factor unbalancing estrogen homeostasis may

e the production of high levels of 4-OHE1(E2), due to overex-
ression of CYP1B1, which converts E1(E2) primarily to 4-OHE1(E2)
Fig. 5) [38,39,54,55]. High levels of 4-OHE1(E2) could result in more

xidation to E1(E2)-3,4-Q. An additional factor could be a lack or low
evel of COMT activity because of polymorphic variation [56]. Insuf-
cient activity of this enzyme would be translated into low levels of
ethylation of 4-OHE1(E2), which could increase the competitive

atalytic oxidation of 4-OHE1(E2) to E1(E2)-3,4-Q (Fig. 5).
OHOH

enimapoDAP

gens and (B) dopamine.

Once the E1(E2)-3,4-Q are formed, they can be inactivated by
conjugation with glutathione (GSH) or by reduction back to their
catechols by quinone reductase (NQO1 and NQO2) (Fig. 5) [57,58],
which can be induced by a variety of compounds [59]. Low cellu-
lar levels of GSH could be an additional factor resulting in higher
levels of E1(E2)-3,4-Q. In addition, polymorphisms in NQO1 that
decrease conversion of E1(E2)-3,4-Q to 4-OHE1(E2) [60] could also
lead to higher levels of E1(E2)-3,4-Q. This unbalanced metabolism
can result in excessive formation of the depurinating estrogen–DNA
adducts, 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua (Fig. 5).
The increased damage to DNA can generate mutations that initiate
the series of events leading to breast, prostate and other human
cancers.

5. Estrogen–DNA adducts in the etiology of human cancer

Our research has revealed that while most of us metabolize
estrogens to products that are easily excreted from the body, oth-
ers at risk for cancer have a metabolic pathway with increased
levels of E1(E2)-3,4-Q that can react with DNA by proton-assisted
1,4-Michael addition [43] to form specific depurinating adducts
(Figs. 3 and 5). These adducts are shed from DNA, and the resultant
apurinic sites can be unfaithfully repaired to generate mutations
leading to cancer [26,27,29,61]. The depurinating estrogen–DNA
adducts travel out of cells and tissues and are excreted in urine,
allowing their identification and quantification as biomarkers of
risk of developing breast and other human cancers [25,45,46,62,63].

High levels of estrogen–DNA adducts have been seen in analy-
ses of urine and serum from women that are at high risk of breast
cancer or have the disease (Fig. 6) [45,46,64]. In these studies one
urine and/or one serum sample was collected from women at nor-
mal risk for breast cancer, women at high risk for breast cancer (Gail
Model score > 1.66% [65]) and women diagnosed with breast can-
cer. An aliquot of each sample was partially purified by solid phase
extraction and 40 estrogen metabolites, conjugates and depurinat-
ing DNA adducts were analyzed by using ultraperformance liquid

chromatography/tandem mass spectrometry (UPLC–MS/MS).

Risk of developing breast cancer is measured as the ratio of
estrogen–DNA adducts to their respective estrogen metabolites and
conjugates (Fig. 6), indicating the degree of imbalance in estrogen
metabolism. In general, the ratio obtained for women at high risk or
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iagnosed with breast cancer derives from a high level of adducts
nd low levels of metabolites and conjugates. In some women, how-
ver, the adduct level is not high, but the levels of metabolites and
onjugates are very low, suggesting that a high proportion of the
etabolites was converted to adducts. In this ratio, the 4-OHE1(E2)

dducts predominate (97%), and the contribution of the 2-OHE1(E2)
dducts is minimal (3%) [45,46,64].

Significant differences (p < 0.001) in relative levels of
strogen–DNA adducts were observed when urine or serum
amples from normal-risk women were compared to those from
igh-risk women or those with breast cancer (Fig. 6) [45,46,64].
hese studies showed that unbalanced estrogen metabolism

eading to elevation of estrogen–DNA adduct levels is associated

ith high risk of developing breast cancer.
Analysis of urine samples from men with and without prostate

ancer also showed that men with the disease have relatively high
evels of estrogen–DNA adducts in their urine (Fig. 7) [25]. These
ES-6'-N7Gua 3'-OHHES-6'-N7Gua DA-6-N7Gua

ts for benzene, naphthalene, estrone/estradiol, diethylstilbestrol, hexestrol and
strol; DA, dopamine.

results were confirmed in a second study of men with and without
prostate cancer (Fig. 8) [62]. Men diagnosed with non-Hodgkin lym-
phoma also have relatively high levels of estrogen–DNA adducts
(Fig. 9) [63]. Thus, formation of estrogen–DNA adducts is associ-
ated with these types of cancer and could play a critical role in
their etiology.

6. Mutagenicity of estrogens

The formation of depurinating estrogen–DNA adducts clearly
indicates that E1(E2)-3,4-Q are, indeed, the predominant carcino-
genic metabolites of estrogens. To determine that these quinones

play the major role in carcinogenesis, we have investigated
their mutagenic activity. Previously, investigators failed to detect
estrogen-induced mutations in in vitro assays. These findings led
to a denial of estrogen genotoxicity [66]. By determining the major
pathways of metabolic activation of estrogens, namely, oxidation of
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atechol estrogens to semiquinones and quinones, and using more
ensitive mutagenicity assays, we have succeeded to demonstrate
hat 4-OHE2 and E2-3,4-Q are mutagenic [27–29,61].

The mutagenicity of E2-3,4-Q was demonstrated by treating
he dorsal skin of female SENCAR mice [27]. The mice were
illed and the treated skin was excised to determine the levels of
strogen–DNA adducts and the H-ras mutations generated in the
kin. Equal amounts of the depurinating 4-OHE2-1-N3Ade and 4-
HE2-1-N7Gua adducts were detected. The observed mutations,
owever, were A.T to G.C transitions. The same A.T to G.C mutations
ere predominantly obtained in the H-ras gene of mammary tissue

f female ACI rats after treatment with E2-3,4-Q by intramammil-
ary injection [29]. The high levels of mutations at A residues in
he H-ras gene and only small numbers of mutations at G residues
ay be due to the rapid depurination of N3Ade adducts and much
lower depurination of N7Gua adducts [23,67].

The genotoxicity of 4-OHE2 and E2-3,4-Q was also demonstrated
n the Big Blue (BB) rat2 embryonic cell line, in which the cells
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eaction of mixtures of 4-OHE2 and 2-OHE2 at different ratios after 10 h of incubation
ith DNA [23].
cancer initiation by estrogens.

contain approximately 60 copies of the �-LIZ vector per cell [28].
Treatment of these cells six times with either compound gener-
ated statistically significant numbers of mutations. In contrast, no
mutagenic activity was detected after treatment of the cells with 2-
OHE2. The spectrum of mutations obtained with 4-OHE2 contained
predominant mutations at A.T base pairs, presumably due to the
rapid depurination of N3Ade adducts.

Mutagenicity was further studied in female BB rats, which have
approximately 80 copies of the �-LIZ vector per cell. The rats were
implanted with E2, 4-OHE2 or both compounds, and, after 20 weeks,
mutations in the cII gene in the mammary cells were analyzed.
Only in the rats treated with 4-OHE2 (with or without E2) were
A.T to G.C mutations detected [26]. These results demonstrated
the mutagenicity of 4-OHE2 under conditions in which it could
be metabolized to E2-3,4-Q. Thus, 4-OHE2 and E2-3,4-Q have been
demonstrated to be mutagenic under appropriate assay conditions,
whereas 2-OHE2 was not mutagenic in BB rat2 cells [28]. The spec-
trum of mutations was consistent with those expected from the
DNA adducts derived from E2-3,4-Q, providing further support for
the mutagenicity of estrogens and the hypothesis that estrogens
are carcinogenic through their genotoxicity.

7. Transformation of human breast epithelial cells by
estrogens

Studies with cultured human breast epithelial cells have pro-
vided further evidence for the initiation of cancer by formation
of estrogen–DNA adducts. The MCF-10F cell line is an immor-
talized, nontransformed estrogen receptor-�-negative cell line.
Treatment of these cells with E2 or 4-OHE2 generates the depuri-
nating estrogen–DNA adducts [54,68,69]. At doses of 0.007–3.5 nM,
treatment with E2 or 4-OHE2 leads to transformation of the cells

as detected by their ability to form colonies in soft agar [70,71].
These cells are transformed by the estrogens even in the presence
of the anti-estrogen tamoxifen or ICI-182,780 [72]. These results
indicate that transformation occurs through the genotoxic effects
of the estrogen metabolites. 2-OHE2 induces these changes to a
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uch smaller extent. Implantation of estrogen-transformed MCF-
0F cells, selected by their invasiveness, into severely compromised

mmunodeficient mice generates tumors [73].
These results demonstrate that estrogen receptor-�-negative

uman breast epithelial cells are transformed by the genotoxic
ffects of estrogen metabolites, supporting the hypothesis that for-
ation of specific estrogen–DNA adducts is the critical event in the

nitiation of estrogen-induced cancer.

. Carcinogenicity of estrogens in animal models

The carcinogenicity of natural and synthetic estrogens was
emonstrated by the induction of kidney tumors in Syrian golden
amsters by implantation of E1, E2, DES, or hexestrol [32]. The 4-
HE1(E2) were carcinogenic in the hamsters, but the 2-OHE1(E2)
ere not [33,34]. The 4-OHE1(E2) were also carcinogenic in the CD-
mouse uterus and the 2-OHE1(E2) had borderline carcinogenic

ctivity [35]. The far greater carcinogenic activity of the 4-OHE1(E2)

ompared to the 2-OHE1(E2) can be understood from the much
reater ability of E1(E2)-3,4-Q to form estrogen–DNA adducts com-
ared to E1(E2)-2,3-Q [23].

Further important evidence for the role of estrogen genotox-
city in the initiation of cancer comes from studies of transgenic
depurinating DNA adducts are in red and protective enzymes are in green. N-
us points where NAcCys and Resv could improve the balance of estrogen metabolism

mice with estrogen receptor-� knocked out (ERKO/wnt-1 mice).
The wnt-1 transgene in female ERKO/wnt-1 mice induced mam-
mary tumors in 100% of the mice, despite the lack of estrogen
receptor-� [74,75]. Both 4-OHE1(E2) and GSH conjugates formed
by E1(E2)-3,4-Q were detected in the mammary tissue of these
mice, but no methoxy estrogens were found [76], indicating that
the estrogen metabolism was unbalanced toward excess activating
pathways and limited deactivating pathways. When the mice were
ovariectomized at 15 days of age to remove their major source of
estrogens and implanted with E2, the E2-treated mice developed
mammary tumors in a dose-dependent manner [77,78]. In addi-
tion, the mammary tumors developed even when the mice were
implanted with both E2 and the anti-estrogen ICI-182,780 [79].
These results provide further strong evidence for tumor initiation
by estrogen-induced genotoxic events.

9. Dopamine
In addition to the estrogens, the other significant aromatic
biomolecule in the body is the neurotransmitter dopamine. Analo-
gously to the catechol estrogens, dopamine can be easily oxidized
to its quinone, dopamine quinone (DA-Q), by auto-oxidation, metal
ion oxidation, or oxidation catalyzed by CYP or peroxidase [80,81].
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At neutral pH, DA-Q undergoes intramolecular cyclization by
,4-Michael addition, followed by oxidation to form leucochrome,
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en, high-risk women and women with breast cancer – first study [45]; (B) median
d study [46]; and (C) serum of healthy women, high-risk women and women with

and then aminochrome. Polymerization of the aminochrome leads
to neuromelanin (Fig. 10). At lower pH, especially between pH 5
and 6, partial protonation of the amino group of dopamine slows
down the intramolecular cyclization of DA-Q, rendering competi-

tive the intermolecular reaction of the quinone with DNA to form
depurinating N3Ade and N7Gua adducts that are analogous to the
depurinating estrogen–DNA adducts (Figs. 2 and 10) [12,82].

Fig. 8. Average levels of estrogen–DNA adducts in urine samples from men with
and without prostate cancer, p < 0.001 [62].
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Analogously to the depurinating estrogen–DNA adducts, the DA-
-N3Ade adduct depurinates from DNA instantaneously, whereas
he DA-6-N7Gua adduct depurinates with a half-life of about 3 h
12]. This common feature is seen not only with the depurinating
strogen [15–17] and dopamine [12,82] adducts, but also with the
epurinating adducts of benzene [11,12], naphthalene [13,14], DES
18] and hexestrol [19] (Fig. 2). This common feature may lead to the
nitiation of cancer or, for dopamine, neurodegenerative disease.

0. Prevention of cancer initiation

The paradigm of cancer initiation in the metabolism of estro-
ens is related to formation of catechol estrogens, with special
mphasis on the 4-OHE1(E2). In the oxidative metabolism of estro-
ens, activating pathways can lead to formation of depurinating
strogen–DNA adducts and deactivating pathways lead to forma-
ion of estrogen metabolites and conjugates. This hypothesis has
een supported by studies in which the levels of estrogen–DNA
dducts in urine samples from women at normal risk for breast
ancer are relatively low compared to the much higher levels in
omen at high risk for breast cancer or diagnosed with the dis-

ase (Fig. 6) [45,46]. In contrast, in women at normal risk for breast
ancer, the levels of estrogen metabolites and conjugates are high
ompared to the relatively low levels of metabolites and conjugates
n women at high risk or diagnosed with the disease (Fig. 6) [45,46].

The relative levels of estrogen metabolites, conjugates and
epurinating DNA adducts can be related to the expression of five
ey estrogen-metabolizing enzymes in breast tissue [83]. The first
ctivating enzyme is CYP19 (aromatase), which converts andro-
ens to estrogens (Fig. 5). A case–control study of 2018 women
ound that women who consumed mushrooms in their diet had
50% lower incidence of breast cancer than women who did not

onsume mushrooms. In addition, women consuming both mush-
ooms and green tea had a 90% lower incidence of breast cancer
84]. The mushrooms contain phytochemicals that inhibit aro-

atase activity. These effects have been studied in cell culture, and
he anti-aromatase activity of the phytochemicals has been sug-
ested to be responsible for the reduced incidence of breast cancer
85,86]. The second estrogen-activating enzyme is CYP1B1, which
onverts E1(E2) almost exclusively to 4-OHE1(E2) (Fig. 5). Further
xidation of 4-OHE1(E2) leads to E1(E2)-3,4-Q, the predominant
etabolites in the initiation of cancer by estrogens.
Two protective phase II enzymes are COMT and quinone reduc-

ase. The former catalyzes the methylation of catechol estrogens,
hereby preventing their conversion to semiquinones and quinones
Fig. 5), whereas the latter, NQO1 and NQO2, reduce catechol estro-
en quinones back to catechol estrogens [57,58,87] (Fig. 5).
Breast tissue from women who do not have breast cancer has
een found to have high levels of the protective enzymes COMT
nd NQO1, and low levels of expression of the activating enzymes
YP19 and CYP1B1 [83]. In contrast, non-tumor breast tissue from
omen diagnosed with breast cancer has high levels of the activat-
istry & Molecular Biology 125 (2011) 169–180

ing enzymes CYP19 and CYP1B1, with low levels of COMT and NQO1
[83]. An additional protective enzyme is glutathione-S-transferase
(GST), which facilitates the reaction between catechol estrogen
quinones and GSH (Fig. 5).

Homeostasis in estrogen metabolism minimizes reaction of
the electrophilic catechol estrogen quinones with DNA, thereby
reducing the amount of DNA damage and resulting risk of can-
cer initiation. This balance is naturally maintained by the enzyme
COMT, which methylates catechol estrogens, impeding their fur-
ther oxidation to semiquinones and quinones (Fig. 5) [54,69].
The ubiquitous antioxidant GSH, which reacts non-enzymatically
with the catechol estrogen quinones or, more efficiently, with the
catalytic activation of GST (Fig. 5), also helps maintain estrogen
homeostasis. A third deactivating phase II enzyme is NQO1 (and
NQO2) [57,58]. These enzymes limit the reaction of catechol estro-
gen quinones with DNA by reduction of the quinones to catechol
estrogens [57,58,87].

Unbalanced estrogen homeostasis can be mitigated by the use
of specific antioxidant compounds. N-Acetylcysteine (NAcCys) and
resveratrol are particularly effective in inhibiting formation of
estrogen–DNA adducts [88]. NAcCys is the acetyl derivative of the
amino acid cysteine, which is one component in the antioxidant
tripeptide GSH. Resveratrol, 3,5,4′-hydroxystilbene, is a natural
antioxidant present in grapes and many other plants [89] and
has anticarcinogenic effects in diverse in vitro and in vivo systems
[90,91].

The human breast epithelial cell line MCF-10F (estrogen
receptor-�-negative and aryl hydrocarbon receptor-positive) was
used to study the effect of resveratrol [55,92] and NAcCys [93] on
estrogen metabolism and formation of estrogen–DNA adducts. The
combined antioxidant activity of NAcCys and resveratrol was also
determined in MCF-10F cells [94]. In addition, the capacity of NAc-
Cys to inhibit transformation of E6 mouse mammary cells [95] and
resveratrol to inhibit transformation of MCF-10F cells [55] has been
seen.

The antioxidant effect of NAcCys in reducing formation of
estrogen–DNA adducts in MCF-10F cells treated with 4-OHE2
(Figs. 5 and 11) [93] is due to the reaction of NAcCys with E2-3,4-Q
and the reduction of semiquinones to 4-OHE2 [88,96]. Resveratrol
similarly reduces semiquinones to 4-OHE2 [55,88,92]. Further-
more, resveratrol induces NQO1, which catalyzes the reduction of
E2-3,4-Q to 4-OHE2 [57], thereby limiting reaction of E2-3,4-Q with
DNA. Another important action of resveratrol is to modulate the
expression of CYP1B1 if it is overexpressed [55].

When NAcCys and resveratrol are mixed together, they have
an additive effect in reducing formation of estrogen–DNA adducts
in MCF-10F cells (Fig. 11) [94]. Low concentrations of NAcCys and
resveratrol inhibit estrogen–DNA adduct formation similarly, but
at higher doses, the effect of resveratrol is about 50% greater than
that of NAcCys [94].

Use of these antioxidants is the logical preventive strategy to
re-establish and/or maintain the homeostatic balance of estrogen
metabolism, thereby reducing DNA damage, the resulting muta-
tions and risk of initiating cancer.

11. Conclusions

Metabolism of estrogens is characterized by a homeostatic
set of activating and deactivating pathways. The homeostasis
minimizes formation of the catechol estrogen quinones, the ulti-

mate carcinogenic metabolites of estrogens, and their reaction
with DNA. When homeostasis is disrupted, excessive oxidation
of catechol estrogens to semiquinones and quinones occurs. The
quinones can react with DNA to form predominantly the depurinat-
ing adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua. These
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dducts generate apurinic sites leading to the mutations that can
nitiate breast, prostate and other prevalent types of cancer. A sim-
lar mechanism of metabolic activation occurs for the carcinogens
enzene, naphthalene, diethylstilbestrol and hexestrol (Fig. 2).
ation of DA-6-N3Ade, DA-6-N7Gua and neuromelanin from dopamine quinone at
Substantial evidence for the genotoxicity of the endogenous
estrogens has been obtained in studies conducted in vitro, in cell
culture and in laboratory animals. In addition, women at high
risk for breast cancer or diagnosed with the disease (Fig. 6), men
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ith prostate cancer (Figs. 7 and 8), and men with non-Hodgkin
ymphoma (Fig. 9) form relatively high levels of depurinating
strogen–DNA adducts compared to control subjects.

The initiating step of cancer by estrogens can be blocked by
he antioxidants N-acetylcysteine and resveratrol (Fig. 11). By pre-
enting the initiation of the disease, promotion, progression and
evelopment of cancer are eliminated. This strategy of prevention
oes not require knowledge of the genes involved or the complex
eries of events that occur after cancer initiation.
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